Review of Tactical Medical Articles

Here is a link to reviews of tactical medical literature. None are current, but if one is interested in peer-reviewed articles, these are a good start.

Review of the Tactical Medical Literature

By: Tripp Winslow, MD MPH

In the medical literature, there is a paucity of peer-reviewed articles regarding Tactical Emergency Medical Services (TEMS). The majority of TEMS based articles are reviews of extrapolated EMS, Trauma, or Emergency Medicine literature. While these review articles are informative and promote awareness of TEMS as a specialty, it is evident that a greater effort must be made to advance the science and evidence based literature available for use in the field. In this journal scan identifying existing TEMS literature, I have summarized a few review articles and presented several original research papers as well. This review was carried out on PubMed. The bibliographies of all articles were reviewed for additional relevant articles.

LINK

Managment of Suspected Spinal Injury In TCCC

A large discrepancy between civilian and military medicine exists with respect to the importance placed upon spinal injury management. In the past, most combat injuries have been secondary to penetrating trauma. Therefore, during the initial phases of treatment, moving the casualty to cover would be the only concern, without taking the time to immobilize c-spine as a civilian medic would. However, new injury patterns are emerging. As Dr. Keith Gates noted in the Spring 2010 issue of The Journal of Special Operations Medicine (JSOM), blunt trauma is emerging more often as an mechanism of injury secondary to the increase in number of IED attacks. According unpublished data, 39% of casualties had mechanism of injuries secondary to blunt trauma. Additionally, according to JSOM, between June and December 2009, of the 119 casualties with blunt force trauma spinal fractures, 14 had spinal cord injuries. Thus, an increasing number of casualties are presenting with thoracic and cervical injuries on the modern battlefield.

This trend has not gone unnoticed. A working group was commissioned to address this issue, out of which a new technique for spinal protection emerged, called Spinal Motion Restriction (SMR). Essentially, the rescuer would use the casualty’s IBA to protect the thoracic spine, while taking care to not unnecessarily manipulating the c-spine during movement. The suggested changes to the TCCC protocol are as follows:

Care Under Fire:
3. Direct casualty to move to cover and apply self-aid if able. If casualty requires assistance, move him to cover. If mechanism of injury included blunt trauma (such as riding in a vehicle which was struck by and Improvised Explosive Device), minimize spinal movement while extracting him from the vehicle and moving him to cover. The casualty should be moved along his long spinal axis if at all possible while attempting to stabilize the head and neck.

Tactical Field Care and TACEVAC Care Insert new #2:
Use Spinal Motion Restriction techniques as defined below for casualties whose mechanism of injury included blunt trauma IF: a) they are unconscious; b) they are conscious and have mid-line cervical spine tenderness or mid-line back pain; or c) they are conscious but demonstrate neurological injury such as inability to move their arms and/or legs, sensory deficits, or parenthesis. For these casualties, leave the IBA in place and secure to protect the thoracic spine. The cervical spine may be protected by using a cervical stabilization device in conjunction with the casualty’s IBA or by an additional first responder holding the casualty’s head to maintain alignment with the back. Long or short spine boards should be used in addition to these measures when available (JSOM, Spring 10, pg. 60).

Unfortunately, initial findings from a pilot study conducted at USAISR found that if one keeps the IBA in place, in a supine position, without the helmet, the c-spine is put in extension. More problems surfaced during later discussions: 1) pouches commonly worn on the IBA could further injuries in the supine position; 2) IBAs obstruct evaluation and treatment, thus they are often removed; 3) SMR may not be protective.

In the end, more research needs to be done in light of the recent trends in wounds. As more soldiers and LEO officers are exposed to blunt trauma, medics need to be conscious of the potentiality injuries secondary to it. While Spinal Motion Restriction is unsatisfactory, it continues the conversation regarding treatment.

What are your thoughts and experiences?

Rhabdomyolysis in the Tactical Enviroment

Rhabdomyolysis (Rhabdo for short) secondary to a combination over exertion and dehydration is gaining attention in exercise circles due to documented cases recently with the increasingly popular high-intensity workout regimens. The threat of Rhabdo is not only confined to the the gym. It ought to be planned for and considered in the tactical environment as well. It is not a concern in the Care Under Fire stage of care, but, as Schwartz, et. al. note in Tactical Emergency Medicine, it ought to be addressed during tactical en route care. In addition to being caused by exertion and dehydration, Rhabdo and the subsequent renal failure my be secondary to a crush injury in the tactical environment. However, this brief essay assumes that crush injuries will tip-off care providers to included Rhabdo in their differential diagnosis. Rhabdo due to exertion may not, however, be as apparent.

Essentially, Rhabdomyolysis is the release of myoglobin into the blood stream, which damages the kidneys in two ways: 1) physically blocking the nerphrons with myoglobin; 2) chemotoxic toxification. While this can only be definitively determined by a lab test at a higher echelon of care, it is beneficial to keep this in mind. For instance, in a disaster situation or MCI, an operator may exert himself and present with acute muscle pain and local edema. It has been shown that the level or exertion required for the Rhabdo is dependent on individual fitness. In fact, as little as 50 sit-ups a day for 5 consecutive days led to a case. Studies of NYC Firemen have shown that there is an inverse relation between risk or Rhabado and fitness level. Therefore, risk is difficult to determine as a group and needs to be considered with patient history in mind.

In addition to exertion, non-exercise risk factors can combine to increase the chance of occurrence. For instance, metabolic myopathies and Malignant Hyperthermia, both of which can be inherited, may increase risk when combined with nominal exertion. Furthermore, viral illness such as Epstien-Barr, herpes simplex, and parainfluenze may increase risks. Finally, the US Army has shown a 200-fold increase in risk in those with sickle cell traits.

While medics in the tactical environment may not have the capabilities to diagnose Rhbado, they can manage it if the patient’s exam leads one to believe it is an issue. However, only 50% of patients present with the classic signs of myalgias, tenderness or swelling of muscles, dark urine. Therefore, if a medic suspects Rhabdo, s/he needs to treat the acute risk of damage to renal tubes. To do so, it is suggested that one needs to use a saline infusion producing an ideal urine output of 200 ml/h. Of course, drugs and buffering with alkalization is optimal, but that is beyond the scope of most medics, and it is probably not needed for support during transport to higher medical care.

The best treatment is, as always, prevention in the tactical environment where resources are precious and limited. Risk ought to be mitigated by ensuring members of your team are in good shape. If they posses any of the listed non-exertional risks, they need to be instructed to use caution when performing tasks and operations.

For more detailed information, see this paper: Rhabdo_Military_Pers.

Lessons Learned: “Four Hours of Tourniquet Time”

Below is an excerpt from a lessons learned compilation titled “First to Cut: Trauma Lessons Learned in the Combat Zone.” Though it is geared toward FST surgeons and forward medical providers, some of the lessons are applicable to tactical medics and mountain rescue. The larger take-away point is that the physiology occurring distally to a tourniquet applied for a long duration needs to be considered when changing or loosening, especially in environments where medical care may be limited (e.g., Third World).

    “Four Hours of Tourniquet Time”

    “26 y.o. male with foot traumatic amputation and
    multiple frag wounds to the right leg with a high thigh
    field tourniquet in place. Arrived to the CSH with SBP of
    100 HR of 120. we had no report on duration of the
    tourniquet. We took down the tourniquet and he promptly
    coded. We put the tourniquet back up, intubated him and
    gave him fluid and bicarb and he came back. We found
    out later that the tourniquet had been in place for over 4
    hours….”

    The use of tourniquets – while rare in civilian trauma is
    very common in combat injuries. Tourniquets are the
    number 1 instrument that a medic can employ to lower the
    KIA numbers. The use of tourniquet with application until
    the absence of a distal pulse by default causes distal
    ischemia. Release of a functioning tourniquet after several
    hours can result in the release of acidic fluid and potassium.
    The patient intubated and without a head injury can be
    briefly hyperventilated. Before taking down a long
    duration tourniquet make sure the patient is well hydrated,
    resuscitated, adding an ampule of sodium bicarbonate or
    THAM can prophylax against the release of “bad humors”,
    lactic acid, and potassium. Also release the tourniquet
    slowly – if the rare arrhythmia arises re–employ the
    tourniquet and retry after further bicarb and fluid. If the leg
    is necrotic remember “life before limb” and perform an
    amputation.

    Lessons Learned:
    –Prolonged tourniquet times can result in the release
    of acidotic fluid and hyperkalemia
    –Perform 4 compartment fasciotomy with all lower
    extremities with significant tourniquet times

Tactical K-9 Care: Part 2

As noted in the Tactical K-9 Care: Part 1, a tactical medic may be the only care provider able to assist a working dog that has been injured. The goal of the following article is introduce medics to common trauma associated with working dogs in a tactical environment. As previously suggested, medics ought to find a veterinarian that has experience with working dogs and work with them to become more familiar with anatomy and what is “normal” for canines, as well as become comfortable working with them.

The following article is from the Journal of Special Operations Medicine, vol. 9, edition 2, pg 14-21.

Care of the Military Working Dog Part 2

Three-Step Cric?

Below you will find an article published in Military Medicine. It argues that traditional ways of providing a surgical airway in a tactical environment are flawed. Therefore, the authors continue, a new approach is needed. Three-step Cric

Objective: Surgical cricothyroidotomy is the airway of choice in combat. It is too dangerous for combat medics to perform orotracheal intubation, because of the time needed to complete the procedure and the light signature from the intubation equipment, which provides an easy target for the enemy. The purpose of this article was to provide a modified approach for obtaining a surgical airway in complete darkness, with night-vision goggles. Methods: At our desert surgical skills training location at Nellis Air Force Base (Las Vegas, Nevada), Air Force para-rescue personnel received training in this technique using human cadavers. This training was provided during the fall and winter months of 2003-2006. Results: Through trial and error, we developed a “quick and easy” method of obtaining a surgical airway in complete darkness, using three steps. The steps involve the traditional skin and cricothyroid membrane incisions but add the use of an elastic bougie as a guide for endotracheal tube placement. We have discovered that the bougie not only provides an excellent guide for tube placement but also eliminates the use of additional equipment, such as tracheal hooks or dilators. Furthermore, the bevel of the endotracheal tube displaces the cricothyroid membrane laterally, which allows placement of larger tubes and yields a better tracheal seal. Conclusion: Combat medics can perform the three-step surgical cricothyroidotomy quickly and efficiently in complete darkness. An elastic bougie is required to place a larger endotracheal tube. No additional surgical equipment is needed.

Equipment Considerations: Level 1

When planning for a mission, a medic must pack relevant equipment that reflects the highest percentages of injuries he could face (e.g, splinting material for air ops) . More important, medics must pack in accordance with the priority of treatment. That is to say, medics ought to pack their gear in three levels.

Level 1:
Level 1 equipment is needed for life threatening injuries. It ought to be carried on your person. For example, tourniquets, bandages, NPAs, etc, are needed to prevent death from the high-percentage killers. These items ought to be carried in IFAKs (your personal as well as your operators’), in leg-rigs, or on your vest. Accessibility is key, especially if you are going to use the equipment in the CUF phase. Also, medics must train to use the casualty’s equipment first, so he does not exhaust his equipment too rapidly. This requires operators to carry their own gear, not rely on the medic to carry it for them. Finally, do not use your personal first-aid kit unless absolutely necessary.

What do you carry in your Level 1 Gear?

Levels 2 and 3 will be covered in future posts.

Developing a Tactical Emergency Medical Support Program

This post is geared toward TEMS Medics. We will be posting a video in two weeks detailing medical equipment improvisation techniques for the field. Dr. Schwartz recently published a book that examines TEMS programs in greater detail. There is a link to it in the right margin of the page, under the heading Recommended Readings.

By Joshua S. Vayer, BA; Richard B. Schwartz, MD, FACEP

The development of a tactical emergency support (TEMS) program is an involved process. Multiple TEMS models effectively function and there is no “best model” for every agency. This article summarizes common components that must be considered in the development of a TEMS program. Components discussed include: goals of TEMS program, structure of the TEMS element, training for TEMS providers, law enforcement status, TEMS provider skill level, arming of TEMS providers, operating location, liability issues, insurance issues, and equipment for TEMS units. The proper development of a TEMS program will meet the primary goal of enhancing the tactical unit’s mission accomplishment. Key words: CASEVAC, explosive ordinance disposal, hostage rescue team, special weapons and tactics, special response team, tactical combat casualty care, tactical emergency medical support, tactical medicine.

TEMS ARTICLE